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ABSTRACT

The work escribed is a continuation of that reported previously
in AEDC-TN-61-_ and AEDC-TDR-62-131. In particular, the present
report contains the basis P... ............. in X .6;1.
for the precise Sumerical calculation of one-dimensional nonequilibrium
flow of a complex gas mixture through a nozzleIf The -ontributon. zf K
th. twaao * &"e 'porta- a.ra-o:Lvdbtelyt bite 4fttv.4ict~ion.

A transformation is shown to exist when the flow is close to equi-
librium that transforms the chemical rate equations into a simpler
system of uncoupled rate equations. Each of the transformed chemical
rate equations is similar in form to a vibrational rate equation. The
coefficients appearing in the transformed equations are given by solu-
tions of an eigenvalue problem. These coefficients are shown to be r
real and positive. 'An example is given that illustrates the transfor- cur

mation for a simple gas model and shows that the transformation behaves
correctly in the frozen and equilibrium limits.-)

Because of their simple mathematical structure, the vibrational
and transformed chemical rate equations can be subjected to numerical
analysis. Thus, a detailed analysis of both Runge-Kutta and predictor-
corrector integration procedures is performed in which truncation error,
stability, and computation speed are examined. The analysis of Runge-
Kutta procedures demonstrates that the greater the order of the proce-
dure, the more stable it is. High-order Runge-Kutta procedures, wifer-
tuntely-, also have reduced computation speed. On an overall basis,
the commonly emplcyed fourth-order procedure still appears to be the
most suitable Runge-Kutta procedure for the integration of the chemical £,.

and vibrational rate equations. The basis for SW improved technique
for controlling the Runge-Kutta integration step size, S+YeTr-1m-
AEDC-TDIh62-I31, is also established.

When Adams predictor-corrector procedures are similarly analyzed,
the greater the order of the procedure the less stable it is. Further-
more, the overall Adams procedure is considerably less stable than is
the Adams corrector formula. The common assumption that stability is
determined primarily by the corrector is thus not valid. A fourth-
order predictor-corrector procedure is also given that is stable for
a largcr integration step size than the fourth-order Adams procedure.

PUBLICATION REVIEW

This report has been reviewed and publication is approved.
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SIReuearch Cdolonel. USAF
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SYMBOLS

PRIMARY SYMBOLS

Ai constants in the expansion for (m (see equation (1-18)

Ai,Bi,ai,bi constants in the predictor-corrector integration
procedure

AIj constants in equation (27)

a ij constants in equation (4)

B stability parameter for Runge-Kutta integration
procedures

Bik coefficients in the transformation (19a)

B(pr) stability parameter for predictor formula

B(co) stability parameter for corrector formula

B(pc) stability parameter for overall predictor-corrector
procedure

C(pr) characteristic polynomial for predictor formula

C(co) characteristic polynomial for corrector formula

C(Pc) characteristic polynomial for overall predictor-
corrector procedure

th
E truncation error of a p - order integration procedureP

"e vibrational energy per mole of species ivi

"e local equilibrium vibrational energy corresponding to
Vie static temperature T

f(x,y) right-hand side of differential equation (31)

G(x) arbitrary function in equation (2a)

H defined by equation (1-16)

vi
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h integration step size

;O),R•i) defined by equations (1-13) and (I-15a)
mm

K equilibrium constant for reaction rcr

k',k see predictor-corrector formulas (48) and (49)

kbr backward rate constant for reaction r

kfr forward rate constant for reaction r

L see equation (6b)r

N1 total number of reacting chemical species

N2 number of chemical reactions

N3 number of chemical species minus total number of
components and polyatomic inert species

N number of chemical species plus number of catalytic
bodies that consist of a linear combination of
other species

ni mole-mass ratio of species i ; that is, number of
moles of species i per unit mass of fluid

n i'e local equilibrium value of n based on Uhe local

static density and temperature

P defined by equation (I-8a)

p order of the truncation procedure

qi generalized mole-mass ratio (see equation (19a))

T static temperature

U flow speed

x distance along nozzle axis

x,y variables in equation (2a)

vii
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s(xo0+h) estimate for y(xo +h) given by predictor forila (48)

ZI' (0o+h) estimate for Y' 0 w+h) used in corrector forala (49)

aisoij,7i constants in the Runge-Kutta integration procedure

ar ' r see equation (7)

ari forward stoichiometric coefficient for species i in
reaction r

backward stoichiometric coefficient for species i inreaction r

5 see equation ( 4 1a)

8ki Kronecker delta

e small constant (see equation (2b))

6r defined by equation (6c)

K unknown in the characteristic polynomial given by
equation (24b)

K i roots of the characteristic polynomial given by
equation (24b)

K defined by equation (16)

K i defined by equation (18)

Vri stoichiometric coefficients (see equation (6a))

p mass density of fluid

p unknown in the stability characteristic polynomial

P, roots of the stability characteristic polynomial

T i vibrational relaxation time for species i

viii
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SUPERSCRIPTS AND SUUSCRIPTS

( )* equilibrium reference value

( ) ' perturbation value

( )' denotes differentiation with respect to x

e value at local equilibrium condition

i value for species i

ijj ',k,,ms indices

in initial value

o value at the beginning of an integration step

r value for reaction r

v vibrational quantity

ix
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1.0 INTRODUCTION

This is the third in a series of reports concerning the calculation
of the reacting flow of a complex gas in the nozzle of a hypersonic
wind tunnel at high stagnation enthalpy. The first of these reports
(Vincenti (1961), hereafter referred to as Part I) describes a five-
species model for air, governed by eight chemical kinetic reactions.
A method is described, in particular, for the numerical calculation of
the one-dimensional nonequilibrium flow of this gas through a hypersonic
nozzle. A specific calculation carried out on an IEM 709 computer, how-
ever, revealed that the method required too much computer time to be
practical for engineering purposes.

The second report (Emanuel and Vincenti (1962), hereafter referred
to as Part II) describes an improved method for calculating nonequi-
librium nozzle flows. This method is relatively simple, numerically
accurate, and does not require an excessive amount of machine time. It
can be suomarized as follows:

(a) An equilibrium solution for the nozzle flow is first obtained.
To facilitate this, a new, simple procedure for computing an
inexact but numerically accurate equilibrium solution was
given.

(b) Equilibrium initial conditions are used to start the nonequi-
librium calculation. This simple method for starting the
nonequilibrium calculation replaces the complicated pertur-
bation schemes frequently employed.

(c) Forward integration of the nonequilibrium equations then pro-
ceeds from the equilibrium initial point. This point is
chosen somewhat upstream of the nozzle location at which the
chemistry first departs appreciably from the equilibrium-
flow solution.

With this method, the numerical solution is insensitive to the location
of the equilibrium initial point, provided that it is chosen as described
in (c) above.

The above method requires that the nonequilibrium calculation
includes a portion of the nozzle in which the flow is close to equilibrium.
Although the extent of this region can be minimized, a very small step
size is nevertheless necessary for the integration therein. If too
large a step size is used in this near-equilibrium region, then the
integration procedure becomes unstable and the numerical solution di-
verges from the correct solution. Thus, to avoid an excessive amount
of computer time, the integration procedure must allow the step size to
vary in a manner that maximizes its size but still keeps the procedure
stable. Part II gave, for a Runge-Kutta integration procedure, a simple
method of controlling step size that approximately satisfies the fore-
going criterion.
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The present report contains the analytical baais for the numerical
method described in Part II and outlined above. Therefore, some
acquaintance by the reader with the system of equations of Part II is
desirable. We shall first show that a system of chemical and vibra-
tional rate equations is equivalent, for purposes of numerical analysis,
to a simple, so-called "stiff" equation. The remainder of the report
is then concerned with the numerical analysis of this equation.

The author wishes to express his sincere gratitude to Professor
Walter G. Vincenti for his guidance in this work. Thanks are also due
to Mrs. Lita Emanuel for editorial assistance.

2.0 PRELIMINARY REMARKS

As Curtiss and Hirschfelder (1952) have pointed out, a type of
differential equation occurs in many physical problems that is extremely
difficult to solve numerically. They designate this type of equation
as "stiff" since a typical example is the equation that describes the
motion of a simple mechanical system with a stiff spring. We shall here
define a stiff equation as any ordinary or partial differential equation
in which the highest-order derivative is multiplied by a small parameter.
Problems governed by this type of equation are also referred to as
singular perturbation problems. This designation, however, is correct
only in the limit as the small parameter goes to zero. Since our inter-
est here is in the numerical analysis of this type of equation, and not
in the limiting process, the terminology of Curtiss and Hirschfelder
will be used.

In a near-equilibrium flow, each chemical and vibration rate equa-
tion involves a small parameter that multiplies the derivative. Thus,
in a near-equilibrium flow, each rate equation is stiff. For example,
uTi is the small parameter in the vibrational rate equations

de e - evi vi vivi vi rie (i)

dx uTi

which applies to steady one-dimensional flow. Here e and e
are, respectively, the actual vibrational energy and the local equilib-

rium vibrational energy per mole of species i . The flow speed is
denoted by u , vibrational relaxation time of species i by Tj • and
x is the distance along the nozzle axis. (For additional details see
either Parts I or II.)

Our object is the analysis of stiff rate equations, both chemical
and vibrational. Because of their complexity, however, the chemical
rate equations will not be studied directly. Instead, they will first

2



AEDC.TDR.63*I2

be transformed into a system of equations of the same form as the vibra-
tional rate equations (1). It will therefore not be necessary to dis-
tinguish between the two types of equations in the analysis.

To derive the transformation, which is given in detail in Chapter
3.0 and illustrated by an example in Appendix II, the chemical rate
equations are first linearized about an equilibrium reference state.
As a result, the transformation is valid only for a near-equilibrium
flow. In general, the reference state is variable, as in nozzJe flow,
and the transformation is then only a local one. In other words, the
transformation is valid only over a limited region of the flow. A
sequence of transformations may thus be required to represent the entire
near-equilibrium region. Our purpose in deriving the transformation,
however, is to be able to analyze numerically the behavior of the rate
equations when the flow is close to equilibrium. Since this analysis
is also of a local nature, the limited region of validity of the trans-
formation is of no consequence.

Inasmuch as the difficulties of integration of the nonequilibrium
equations arise solely out of the stiffness of the rate equation,
certain assumptions may be introduced to simplify the analysis. These
assumptions, however, in no way alter or reduce the numerical diffi-
culties from those encountered when the original rate equations are
integrated. To better understand these assumptions, we first note that
the vibrational rate equations (1) are coupled only through the depend-
ence of ev and uT i on the density and temperature of the flow.vi,e i

The same is also true of the transformed chemical rate equations (see
equations (20)), which for steady one-dimensional flow have the same
structure as the vibrational equations. Thus, there will be no loss
of generality if the following is assumed (after the chemical rate
equations have been transformed into their simplified form):

(a) All of the rate equations are uncoupled. This is equivalent
to assuming that the density, temperature and flow speed are
known functions of the independent variable x , since any
coupling in the rate equations occurs through these variables.
More specifically, when the equilibrium-flow solution is
known, these variables may be approximated by their equilib-
rium-flow values. This assumption in no way alters the struc-
ture of the rate equations, and only slightly modifies the
magnitudes of the small parameters. Hence, as stated earlier,
no loss of generality ensues from this decoupling assumption.

(b) In place of a system of uncoupled rate equations, it is
sufficient to consider only one such equation. This equation
is taken to be that containing the smallest parameter. When
this assumption is examined a posteriori, it is readily found
to be Justified.

3
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An important consequence of the transformation referred to earlier
in that the small parameters in the transformed chemical rate equations
are all positive. (Appendix I contains the proof for this statement.)
This fact, in conjunction with the foregoing assumptions, implies that
we need examine only one equation with the same form as the vibrational
rate equations (1). Under these assumptions, the stiff equations may
be represented by

dx G( )

and any numerical analysis that is valid for this equation will be
equally valid for the original system of chemical and vibrational rate
equations of Parts I and II. In equation (2a), e(x) is a small
positive function, while G(x) is an arbitrary function. Equation (2a)
can be further simplified, however, still without any loss of general-
ity insofar as the numerical analysis is concerned. To this end, we
now also assume the following:

(C) The functions e(x) and G(x) are given by

E(x) = small positive constant, S(2b)
G(x) - x ,

These simplifications are justified by first expanding e
and G in Taylor series about any point x' . The variables
x, y are then transformed so that the numerator of the
right-hand side of equation (2a) has (in terms of the new
variables) the form y +x +(constant) x2 + ... . Finally,
only the lowest order terms are retained in the right-hand
side of equation (2a), which leads to equations (2b). This
last step is consistent with the local nature of the initial
transformation of the chemical equations as well as with the
subsequent numerical analysis.

Because of their simplicity as compared with the original rate
equations, equations (2) are readily analyzed. From this analysis, two
important facts become apparent. First, at the outset of the nonequi-
librium calculation a small integration step size is necessary. This
requirement is a direct consequence of the magnitude of the truncation
error when the integration starts from an equilibrium condition. Second,
the integration step size can increase appreciably after a short ficti-
tious transient region is completed wherein the derivatives of the vari-
ables change from their frozen values to approximately their equilibrium
values. After this transient region, the size that the integration step
can attain depends on the specific integration procedure. For this
reason, the two most commonly used procedures for numerical integration,
Runge-Kutta (Chapter 5.0) and predictor-corrector (Chapter 6.0), are
analyzed. This analysis, it should be noted, is applicable only to the

4
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integration of the nonequilibrium equations when the flow is close to
equilibrium. Once the integration variables have begun to diverge from
their local equilibrium values, the nonequilibrium equations are easily
integrated, and any standard procedure is satisfactory. The comparative
evaluation of the two procedures, given in Chapter 7.0, reveals that a
particular fourth-order predictor-corrector procedure appears to be the
most suitable for the integration. It is not, however, appreciably
superior to a fourth-order Runge-Kutta procedure. Because this latter
procedure is considerably simpler to code for a computer than are the
other procedures, it was utilized for all the numerical integrations
given in Part II.

The author, in an extensive search of the literature, could locate
only two published articles dealing directly with the numerical inte-
gration of stiff equations. The first is the previously mentioned
paper by Curtiss and Hirschfelder (1952), which recommends the use of
a certain, simple integration procedure. Inasmuch as their analysis
is misleading, this procedure is discussed in Section 6.3.

The second article is by Certaine and is contained in the volume
edited by Ralston and Wilf (1960). Hamming (1962) also presents
Certaine's procedure in a simplified form. The procedure is as follows:

(a) First, add y/e to both sides of equation (2a) and then
multiply by exp(x/e)dx , thereby obtaining

exp(x/e)dy + y exp(x/e) dx = . 1 exp(x/e)G(x)clx . (3a)
E E

(b) If e is assumed constant over an interval, say from x
to x 2 , then equation (3a) may be written as

d(y exp(x/e))=- lexp(x/e)G(x)dx . (3b)

(c) Finally, integrate equation (3b) from x1  to x2 and then
rearrange the results, thereby obtaining

x2

y2 = exp ' 1 2) -1 exp(-x /e) exp(x/e)G(x)dx (3c)Y2 m l~U;= "1 "21

where the quadrature on the right is readily obtained by
standard numerical techniques.

5
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The principal objection to Certaine's procedure is that it cannot
be used to integrate the chemical rate equations given in Parts I or II
unless their right-hand sides are first linearized and the smll para-
meters explicitly exhibited. A second difficulty inherent in the pro-
cedure is the choice of the appropriate integration step size x2 -x1
In particular, the step size must be sufficiently small that the small
parameters are nearly constant over the integration interval. Thus,
the rate of change of magnitude of each small parameter must be period-
ically checked to see whether the step size 3hould be altered.

3.0 CANONICAL FORM FOR THE CHEMICAL RATE EQUATIONS

In this chapter we shall show that when the flow is close to equi-
librium, the chemical rate equations can be transformed into a system
of stiff equations having the same form as the vibrational rate
equations. While this transformation is not directly useful for solv-
ing problems, it does justify the use of equations (2), which are basic
to the subsequent analysis. The particular transformation to be devel-
oped is not limited to steady one-dimensional flow, but is valid for
unsteady three-dimensional flow as well.

The situation here is similar to that of a conservative mechanical
system that performs small oscillations about a fixed equilibrium
configuration. Many textbooks, such as Goldstein (1950), show that a
linear transformation can be introduced to transform the equations of
motion into a form referred to as canonical because of its simple
mathematical structure. Since this procedure will be followed approx-
imately in our derivation of the canonical form for the chemical rate
equations, the general procedure for a vibrating mechanical system will
first be summarized as follows:

(a) The potential and kinetic energies are each expanded in a
Taylor series about the equilibrium configuration. Only the
first approximation to the potential and kinetic energies is
retained. Consequently, the equations of motion are linear,
second-order differential equations.

(b) A principal-axis (or normal-coordinate) transformation is
introduced that diagonalizes the coefficients of the poten-
tial and kinetic energies and thereby transforms the equa-
tions of motion into their canonical form.

(c) An eigenvalue problem is solved for the eigenfrequencies in
order to find the coefficients in the principal-axis
transformation. Because the first approximation to the
potential energy is positive definite, all the eigenfre-
quencies can be shown to be real and positive.

6
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In parallel with the foregoing, the right-hand side of the chemical
rate equations will first be linearized about an equilibrium reference
state in a manner similar to that given by Vincenti (1959). The refer-
ence state for a slightly varying flow may be chosen as the uniform
undisturbed (or free-stream) condition. When the flow has large vari-
ations, as in a nozzle, the reference state is taken as the nonconstant
equilibrium-flow solution. In general, we shall consider the reference
state to be a function of position and time. A linear transformation
of the quantities that specify the chemical composition is then
introduced. This transformation, when subjected to the condition that
the rate equations transform into their canonical form, results in an
eigenvalue problem. Each eigenvalue is the reciprocal of the small
parameter in a canonical rate equation. Because of its complexity and
length, the proof that all eigenvalues are real and positive is given
in Appendix I.

3.1 CHEMICAL RATE EQUATIONS

The following four quantities, necessary in the subsequent analy-
sis, are here defined as follows (cf. Part II):

N = total number of reacting chemical species,

N2 = number of chemical reactions,

NA = number of chemical species minus total number of components
and polyatomic inert species,

N4 = number of chemical species plus number of catalytic bodies
that consist of a linear combination of other species.

As an illustration, given also in Part II, consider a model of air con-
sisting of 0, N, NO, N2, 02 , and A and having eight chemical reac-
tions to specify the chemistry. The number of species NI is then
six, and the number of reactions N2  is eight. Since there are three
atomic species (one of which is inert), N3  is three. The quantity
11N4 is introduced in order to simplify the treatment of catalytic
bodies made up of a group of species, such as N + N2 + NO . Thus, a
fictitious species M , which represents any atom or molecule from the
species N, N2 , or NO , can be used to represent the catalytic body.
If M is the only such fictitious species, then N4 in the present
example is seven.

The composition of the fluid is specified by the number of moles
of species i per unit mass of fluid ni , and is referred to as the
mole-mass ratio. When the mole-mass ratios ni for the reacting
species (i = 1,...,Nl) are known, the values for the fictitious
species (i = N1+ 1,...,N4) are readily found from N4 - N, alge-
braic equations. In addition, there exist NI - N3 algebraic equa-
tions that express conservation of components and the constancy of
ni for any polyatomic inert species. The number of independent values
of ni , which is the minimum number that must be accounted for by rate

7
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equations, is thus NI- (NL-N 1) -(N 1 -N3 ) = N3 . The additional vari-
ables are given by algebraic equations of the form

N3

ni = a o+ ajjnj , i = N +l,...,N 4 , (4)
J=1

where the aij are constants and the independent species are numbered
from 1 to N3 . The first N1 - N3  of equations (4) account for con-
servation of components and inert species. The remaining N4 - N1
equations provide for any nonsimple catalytic bodies.

The system of reactions is represented by

N 4  kf N1

zari xi :ýý riXi r 2 1,'",N2
i=l 1% i

where Xi represents the chemical species and ari and Pri are the
stoichiometric coefficients of the reactants and products respectively.
The forward and backward rate constants for reaction r are denoted by
kfr and kbr •

The chemical rate equations are now written for a general unsteady
three-dimensional flow as follows:

Dn 1 L

r=l r

where D( )/Dt is the substantial derivative and

Vri =1ri" an ' i 1,...,N 4 , r = 1,...,N2 , (6a)

Lgr (p,T,n i) = i - cr Vl , r = l,...,N2 (6b)
cr kal

a -1 N4  a
e(PTni)3 = P)r kfr U , rk I r = 1,..., N2 " (6c)

k=l

8
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The density is denoted by p , the equilibrium constant for reaction r
by K cr, and a r and r are defined as follows:

N4  N4

a, - Or* , r . l,..., . (7)

J-1 J-l

For convenience, the number of rate equations (5) is here taken as N1
instead of the minimum number N3 . The equations expressing conser-
vation of components will be taken into account later when the number
of rate equations will be reduced to N3 . We may also note that any
catalytic body or inert species actually appears in the foregoing
equations only in 0 I since v rt - 0 for i - N1 + 1,...,N4 . Con-
sequently, all inert species are taken in the group numbered from
N1 + 1 to N4 , formerly used only for fictitious species. The first
N1 species may then be arranged in any arbitrary manner.

3.2 LINEARIZED FORM OF THE CHEMICAL RATE EQUATIONS

For simplicity, we require that the reactions be sequenced such
that the first N are linearly independent. Using the notation
( )* to denote tie equilibrium reference state, the reference compo-
sition is then given by

Lr(P*,T* ,n) = 0 , r = 1,...,N 3 , ( 8 a)

and

N3

n- ao + Z atfni , I-- N3+I,..'.,NI (8b)
3-1

where T denotes the temperature, and where equations (8b) express
conservation of components (cf. equations (4)). In general, as noted
earlier, the quantities with asterisks are functions of position and
time. These quantities are thus assumed to be known. Since the local
equilibrium composition is also necessary for the linearization, the
pertinent equations are now given as follows:

L r(p,T,ni,e) = 0 , r = 1,...,N , (9a)

and

9
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nJ,e ' a o + X an 3 ,e , e - N+1,...,N . (b)

We now perturb about the equilibrium reference state, denoting the

perturbation quantities by ( )' . Thus, we have

p p* + p,

T T* + T'

"ni n"*i + i (10)

i,e + nie

er=9* +6' ... ,N2 ,
r r rr2

where 8* = (* T*,Txn.) Both L (p,Tn.) and L (p,T,n ) are now

£ expandedraboud the reference statetereby resulting In

L r(p,,T~ni L L(P*)T*Pn) + r P1 T'N, a r) * n;1+V

Niii

r ;n + 2 1-

and

Lr(p,,,nie) L r (p*-T*,n,) (1) p' - T'

+ ; nlj + ... , r- l,...,N2. (12)

According to equation (9a), the left-hand side of equation (12) is zero.

Subtracting equation (12) from (1i) thereby results in the following:

10
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.Lr-r(pT,,n) - r n, n,,.) 0 r*

Using equations (10)

n; - i' . n 1  ,. l,..,N1 , (1nn)

ye obtain finally the linear approximation

N1

Aw l ( ~R~ 1.9 . .,12 . (13b )

The right-hand side of equations (5) can thus be linearized, resulting
in

D N 2  N I *Dni Vri r1)fLr
W_ ý- j -j (znJ- ni~ i - lp...,N1 . (15&)

By interchanging the order of the r and I suiations, we can write
equation (15a) as follows

"Awl

where

; *("*,•') N " r2 a A

(16)

Conservation of components is finally accounted for by replacing both
n- and n-(1 = N3+l... ,N 1 ) in the right-hand side of equation (15b)
by'equations (J&) and (9b). After some rearrangement, the following
is obtained:

11



Al DC.TDR.-63.2

1 3 u(nie- 'I) P i = I,...,IP , (17)
Awl

where

"11

K W UKU + a £ = I,...,I 3 , A 1 ,.,N3 5 .(18)

J-13+1

3.3 TRANSFORMATION OF THE CHEMICAL RATE EQUATIONS

In order to transform the linearized form of the chemical rate
equations (17) to their canonical form, we hypothesize the linear
transformation

N3

q B.1 ick lp. jN'~ (19a)
Zi " Biknk J' - ,.,3,

and hence

N3

,e Bxknke , i-, 3...,N3 , (19)

where the q. are generalized mole-mass ratios and the Bik are
constants. &he canonical form of equations (17) corresponding to equa-
tions (i), is then given by

Dq i

-D - - •i(q i-q ,e) i = 1,...,N 3  , (20)

where the Ki are functions of p* and T* . So far, the Bik and
Ki are still undetermined. They are found by the following procedure:

(a) Differentiate equation (19a), and replace Dnk/Dt by means
of equation (17), thereby obtaining

12
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Then Interchange the I and k sumuations to obtain

D11  R35IkJik) (n Its- n) , 1e.1I*Cb

(b) Replace q - q • in equation (20) by mans of equations (19),

Dqi K N3

D " "1 Z Bik(nk'nk,e) I - 1,...,N3. (22a)
k=1

Replace the k-variable of sumation by A in equation (22a)
as follovs:

N3

-L iBij(nje,- nj) t i -1,...,NN . (22b)

(c) Compare equations (211b) and (221b) to ob)tain

k-1

or

N3 ( oaee•uK•B io- 0 n 1b-) ... ,J, 1-),.. o,N3 ob(23)

X(5kE -- k ik
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vhere iJ In the Ironecker delta.

(d) For the moment, assume that the Ki and ki have known
constant values, With the i subscript n iquations (23)
held fixed, we then have N1 homogeneous linear equations
for the N3 unknown B3 k • This system has a non-trivial
solution if, and only if, the determinant of the coefficients
satisfies the condition

l5kixi- -k=i - o 1 a- l,...,ON3 .(24a)

These N3 equations are equivalent to the single character-
istic equation

U 0 ,I(2" b)

whose N3 roots are the N3 eigenvalues Ki . In general,
the KkJ are functions of p* and T* and therefore can be
determined once an equilibrium-flow solution is available.
For a given value of p* and T* , the numbers K then
determine the eigenvalues by means of equation (2W5. The
KkA , in conjunction with a specific Ki , for example K1 ,
are next used to determine the coefficients Blk (k-l,...,N 3 )
via equations (23). Thus, each eigenvalue Kt is associated
with an eigenvector Bik . The resulting transformation is
valid however, only in a region of the flow that includes the
specific values chosen for p* and T* . The extent of this
region depends on the magnitude of the changes in the refer-
ence state. For example, if the reference state is taken to
be the uniform undisturbed equilibrium condition for a
slightly varying flow, then the transformation is valid for
the entire flow field.

(e) For a given root 41 of equation (24b), equations (23) do not
uniquely determine the Bik . This indeterminacy also occurs
in vibration theory. One possible simple way of removing it
is to require that

Bii = 1 , i = l,...,N 3 . (25)

Thus we have proved the existence of the linear transformation (19a) that
transforms the chemical rate equations into their canonical form (20).

Two points still remain to be discussed. First, are the Ki real
and positive? This is answered in the affirmative by the proof given
in Appendix I. The physical significance of this result is discussed in
the next chapter.

14
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The second point is that the transformation (19a) can be extended
to the mole-mass ratios ni (i - N3+l,... ,N1) by defining new gener-
alized mole -mass ratios as follows:

q- a n, i a N3+ l,...,SN . (26)

Equations expressing conservation of components can then be written in
term of the generalized mole-meass ratios providing no two eigenvalues
are equal, as is generally the case. (See Goldstein (1950) for addition-
al details.) The transformation (19a) is then non-singular and an
inverse transformation exists. When the inverses of transformation (19a)
and (26) are substituted into equations (4), the Jesired result is
obtained in the form

N3

q, W aio + Z A 3jqj i - N3+ l,...,Nl , (27)

J-1

where the Aij are constants.

4.0 GENERAL PROPERTIES OF STIFF EQUATIONS

In this chapter, certain general properties of stiff equations are
discussed. These properties are based on equations (2) and are exten-
sively used in the rest of the report.

For convenience, we now combine equations (2a) and (2b) to give

dy (28)

where e is a small constant. The parameter e thus corresponds to
u'i of a vibrational rate equation or to u/Ki of a transformed chem-
ical rate equation. The general solution of ecuation (28), in non-
dimensional form, is readily seen to be

. + l+ ( i " exp - , (29)

where y(0) - Yin is the initial condition. Sketch 1 shows y/l versus
x/e for positive a for two different values of Ytn/e . The line
(y/e) - - (x/e) , referred to as the local equilibrium curve,. corresponds
to qi qe • Furthermore, the local equilibrium curve corresponds toIe

15
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2
y/E

solution for -Y.a 2

solution for (y.n/4) - 0

-2 //4)"-(x/,) + 1
Local equllbrii) (as ote)

Sketch 1. Two Solutions of Equotion (28) for Positive e

1 solution for (yin/E) - 0

5+ £

solution for (yin/l)" 2

-2 (y/e)-(x/i) (local equilibrium curve)

S\/O - (x/g)+ 1 (asymptote)
-3,

Sketch 2. Two Solutions of Equation (28) for Negative E
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the equilibrium-flow solution when a -s 0 . The other dashed curve,
(y/G) - - (W/e) + 1 , referred to as the asymptote, is a particular
solution of equation (28) for (yjt/e) - 1 . This curve corresponds
to the true nonequilibrium solution. Also shown in Sketch 1, by heavy
line segments, Is the direction field of equation (28) for three
different values of y/s at (x/e) - 1 . Because of the converging
nature in the positive x-direction of the direction field, all solu-
tions tend toward the asymptote exponentially fast, regardless of the
initial value Yin . As a result, the two solutions shown differ only
slightly from the asymptote for any x/e greater than about 3 . Any
solution thus consists of two portions: a transient region in which
the solution decays rapidly towards the asymptote, and a subsequent
region in which the solution differs only negligibly from the asymptote.
When equation (29) is plotted in dimensioal coordinates (i.e., x and
y ) and e is very small (e.g., e - 10"), then the local equilibrium
curve y - - x lies very close to the asymptote. Consequently, the
direction field, when e is small, changes extremely rapidly in th-
vicinity of the local equilibrium curve.

Sketch 2 is similar to Sketch 1 except e is now negative. The
coordinates in this sketch are chosen as - (y/e) and - (x/s) in
order that the curves (y/E) - - (x/e) and (y/e) = - (x/e) + 1 have
similar orientation in the two figures. The direction field now diverges
in the positive x-direction, as shown at - (x/e) = 1 . Thus, all
solutions tend to diverge exponentially fast from (y/e) - - (x/e) + 1 ,

which, for convenience, is still referred to as the asymptote.

From a physical point of view, negative values for e (or Ki )
imply that the nonequilibrium-flow solution cannot remain close to the
equilibrium-flow solution. Any nonequilibrium nozzle calculation, even
with equilibrium initial conditions, would in this case, diverge inidi-
ately from the equilibrium-flow solution. This situation is, however,
physically unrealistic. We have, therefore, established the fact that
negative e (or K ) cannot occur by physical reasoning. Appendix I
also establishes ths by purely mathematical reasoning. Consequently,
positive e will be assumed in the rest of this report.

5.0 RUNGE-KUTTA ANALYSIS

The Runge-Kutta procedure is one of the oldest and most commonly
used methods for the numerical integration of ordinary differential
equations. This chapter considers the behavior of this procedure as
applied to the integration of the stiff equation (28). Our main result
will be the determination of the truncation error and of a stability
criterion. To clarify the discussion, a brief preliminary descripticn
of the Runge-Kutta procedure will be helpful. For additional details,
the interested reader is referred to Ince (1926), Hildebrand (1956) or
Ralston and Wilf (1960).

17
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The Runge-Kutta procedure is designed to approximate the Taylor-
series solution

Y(xo+h) - y(xo) + by'(xo) + 1. y"(xo) + ... ,(30)

to the equation

y( d Z f(x,y) ,(31)

at the point xo+ h . The quantity h denotes the integration step size.
In contrast to the formal Taylor-series solution (30), the Runge-Kutta
procedure does not require the explicit evaluation of the second or
higher derivatives. Rather, an approximation to expansion (30) is obtain-
ed at the expense of several evaluations of the first derivative. The
approximation to the first p +1 terms on the right-hand side of (30),
referred to as a pth-order Runge-Kutta procedure, requires the evaluation
of p first derivatives. These derivatives are evaluated at various
points in the x,y plane as follows:

fl1 = f(Xo'Yo)'

f2 = f(x0+ Cvh, o y 212hfl),

f = f(xo+ '3 h, Yo+ O3Yhl + 32bf2) (32)

p-l

f =f(X0 + aph, Yo + h T 0pj f ,
S3J-1

where yo -y(x) and the Q1  and . are constants whose values are
discussed shortly. The desired approxilation is then obtained from

y(xo+ h) = y0+ h ,' f . (33)

i-l

The constants C1, 7.j , and Oij are determined by the condition that
equations (30) and (33) match to the pth order at the point (xo,yo)
In other words, the coefficients of like powers of h from (h)O to
(h)P are equated with each other. This matching condition does not
determine all the constants. For example, for a fourth-order procedure,

18
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the matching condition leaves two of the constants unspecified. Values
for these two constants may therefore be chosen arbitrarily.

At the start of a nonequilibrium calculation, as Section 5.1 will
demonstrate, the step size h must be small. It is therefore imperative
that provision be included in the integration procedure for increasing
or, if necessary, decreasing the step size as the calculation proceeds
in the x-direction. Any technique for varying h requires an estimate
of the error that is introduced into the solution when a single step is
integrated. This error is actually an estimate of the combined round-
off and truncation errors. To estimate this error for a step of size
h , the step is recomputed by means of two steps, each of length h/2 ,
and the results compared. (See Ince (1926) for further details.) Although
this is customarily referred to as a single step in the integration, the
numerical solution, in fact, is primarily given by the two half..step cal-
culations, which are more accurate than the full-step result. (This
terminology is also used in Part II.) Each step of length h thus
requires 3p complete evaluations of the right-hand side of the differ-
ential equations if the error estimation is performed. In comparison
with two half steps without error estimation, which would require 2p
evaluations, we see that error estimation increases overall computation

time approximately 50%.

Runge-Kutta procedures will be compared with predictor-corrector
procedures in Chapter 7.0. These latter procedures, however, do not
estimate the error by recomputing with two half steps. This comparison
therefore requires that each half step, henceforth denoted by h , be
considered as the Runge-Kutta step size*. The number of evaluations of
the right-hand side of the differential equations, in this instance, is
taken as 1.5p per integration step.

In practice, the most widely used Runge-Kutta procedure is the
fourth-order one. The results obtained from the subsequent analysis
will be valid, however, for any order Runge-Kutta procedure from
second-order ( p - 2 ) on. Because of the considerable complexity
of this procedure, such generality is rare. For an example of how
extremely complicated the results usually are, the reader is referred
to a paper by Lotkin (1951). The error associated with the inte-
gration of equation (31) by a specific fourth-order Runge-Kutta pro-
cedure is given in that paper. The simplicity and generality of the
results that will be obtained here are directly due to the simple
mathematical structure of equation (28).

A single step of length h' in Part II will now be considered as two
steps, each of length h , where h' - 2h

19
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5.1 TRUNCATION ERROR

We now show that the values chosen for the free constants in
the RunWe-Mitta procedure ame lumterlal when f is given by*

f - - ý-' .(34)

The first step in the proof is to show that equation (33) does not
contain higher powers of h than (h)P . To do this, -substitute equa-
tion (34) into (32) as follows:

f 1= 6_ " (y0+ xo)

f 2 9 1 (yo+ 02lhli x0 + V) = - (Y x0+ h[ 21 f 1 + O%]) (35)

Thus, f, does not involve h , f2  is linear in h , f3  is quadratic
in h , etc. The highest power of h in fp is therefore (h)P"I .
Since the summation term in equation (33) is multiplied by an h , the
highest power of h in this equation is (h)P . Consequently, the right-
hand side of equation (33) is precisely equal to the sum of the first
p +1 terms of the Taylor-series expansion (30). Thus no matter what
values are chosen for the free constants, equation (33J will compute the
same number, thereby proving the above assertion. The underlying
reason for this result is that f , as given by equation (34), is linear
in both x and y .

As a consequence of the foregoing, a simple expression for the
truncation error** can now be obtained. The truncation error is defined
as the difference between the (p+ 2 )th term in the Taylor-series
expansion (30) and the corresponding term computed by equation (33).
The (p+2)th term in the series expansion is given by

The quantity -(e)" , as used in this report, is equivalent to
A a (af/ýy) , which is frequently used in the literature of numerical
analysis.

** This truncation error should not be confused with the estimate for
the combined round-off and truncation errors mentioned in Section 5.0.
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x,,0

whereas the corresponding term of equation (33), i.e., the term contain-
ing (h)P÷l , is zero. Denoting the truncation error of a pth-order
Runge-Kutta procedure by Ep , we therefore obtain the result

-- + x .-- G) (- h)• (37)45+17 L 0 0e

where equation (34) is used to evaluate 'he derivative in expression (36).

Three important conclusions stem from this equation. First, the
term yo+ xo - £ represents the vertical distance from a point
(x o- x0 + C) on the asymptote to the integration point (xo,yo)
Thus, when the numerical solution is close to the asymptote this term
is small. In this case, it is possible to have h > e and still have
a mall truncation error. A necessary condition then for a large inte-
gration step size is that the numerical solution be close to the asymptote.
In terms of the integration of the nonequilibrium equations of Part II,
this means that the numerical solution must be close to the physical solu-
tion in order that the step size be large.

Second, when xo = Yo M 0 the truncation error is given by

. . (M h)P+l (38)

The condition xo = yo - 0 represents the equilibrium initial condition
for the rate equations. This topic was discussed in detail in Part II.
We here note that for small Ep , in this condition, it is necessary that
h be less than e . For example, with p - 4 and IEpI - 10-5 , equa-
tion (38) requires that (h/e) = .2605 .

The third result to stem from equation (37) is that the condition

JEPl I 'S IE p 1 (39)

requires that
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h/c 9 p + 2 (40)

In other words, for the same integration step size, higher-order proce-
dures will have smaller absolute truncation errors provided condition
(40) is satisfied. This condition must be fulfilled, as will be shown,
in order that the integration procedure remain stable.

5.2 STABILITY

This chapter concludes with a discussion of stability of Runge-
Kutta procedures applicable to the region in which the numerical solution
differs only negligibly from the asymptote.

The accuracy of a numerical integration depends both on the error
incurred at each step of the integration and on how the error grows.
If the error decreases as the succeeding steps are performed, the inte-
gration procedure is referred to as stable. In other words, if the
numerical solution converges to the exact solution as the succeeding
steps are performed, the integration procedure is considered to be stable.
If the error remains constant, the procedure is termed neutrally stable,
and if the error increases, the procedure is termed unstable.

We now turn to the problem of applying this definition of stability
to our consideration of equation (28). As Sketch 1 shows, all analyt-
ical solutions tend toward the asymptote. Consequently, any stable nu-
merical solution must also tend toward it. In other words, the distance
from the point (xo+ h,y(xo+ h)) to the asymptote must be less than
the distance from (xo,yo) to the asymptote, in order for the numerical
procedure to be stable. For simplicity of formulation, we shall use
vertical distance rather than actual distance; the final result, of
course, is the same. Sketch 3 presents a sketch of the pertinent
quantities. The two heavy vertical lines represent the two distances.
Their ratio, denoted by 8 , is given by

-(x 0 + h)+ e - y(x 0 + h)yo , (4la)- Xo0+ E - Yo0

where the numerator is the vertical distance at xo+ h . After a certain
amount of algebraic manipulation 6 can be written as

Y(xo+ h)- y0  h

1 + x . (4lb)
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y

Yo x+h z
x 0

0 *0
Y(xo+ h)

7,- ->*Y "
Sketch 3. Stability Diagrem

The quantity y(xo+ h)- yo in equation (41b) is to be computed by a
pth-order Runge-Kutta procedure. As shown previously, the same value
can also be obtained from the Taylor-series expansion (50) truncated
after the (h)P term. When this expansion is written out, we obtain
the equation

Yo+ xo
Y(Xo+h)-Yom.h -I( +.

}'- + } (42a)
+ PD +"'"+.)p-1
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where the curly brackets contain the derivatives y'(Xo),
y"(xo),... ,ykP)(xo) , evaluated in accordance with equation (28).

Again after some algebraic manipulation, equation (42a) can be re-
written in the more convenient form

Y(x0+.h)- Y + ( o ) 0- • (42b)

After substituting equation (42b) into equation (41b), we obtain the
final result

(tip)

-1 - + 1(.)2  (41c)

According to the foregoing considerations, a Runge-Kutta procedure
of order p is stable in the integration of equation (28) if

151 < 1. (43)

For each integer value of p there will exist two non-negative values
of h/e such that 151 - 1 . One of these values is (h/e) = 0 .
The other value, denoted by the stability parameter B(p) , represents
the upper limit for values of h/C for which the integration is stable.
Thus, condition (43) is equivalent to the following stability condition

h/e < B(p) , (44)

where the quantity B(p) is determined by the relation IB(B;p)l = 1

The following table lists B(p) for different values of p
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STABILITY PARAMETER B(p)

p 5(e;p) B(p)

2 1 2.00

3 -1 2.52

4 1 2.80

5 -1 3.20

An important conclusion of the above analysis is that stability
considerations impose a limit on the Runge-Kutta step size when C
is small. Stable integration with (h/E) > 1 , however, is possible.
When (h/e) > 1 , the truncation error will be inordinately large
unless yo+ xo - e is small, i.e., unless the numerical solution is
quite close to the asymptote. Thus, only after the transient region
is completed are large integration steps, i.e., B > h/e > 1 , possible.

Negative values for 5(B;p) in the above table signify that
y(xo+ h) and yo are on opposite sides of the asymptote. For example,
for p = 4 the integration procedure is stable for 0 < h/e < 2.80 ,
and yo and y(xo+ h) are both on the same side of the asymptote.
The above table shows that condition (40), as already mentioned, is
always satisfied when the integration procedure is stable. Therefore,
if h/e is chosen to achieve stability, then the higher-order the
procedure, the smaller the truncation error. This table also demon-
strates that higher-order Runge-Kutta procedures are more stable than
lower-order procedures. Each increase in order, however, requires
additional evaluations of the derivative f(x,y) (see equation (31)).
Since the evaluations are frequently very time consuming on a digital
computer, a compromise between stability and computation time becomes
necessary. When the truncation error, stability, and computation time
are all considered, the fourth-order procedure appears to be a reason-
able choice.

The value of B , given in Part II for a fourth-order Runge-Kutta
procedure, is based on a double step of length 2h . Its value is
therefore 2 x 2.8 - 5.6 . (The value actually given in Part II is
5.7, and is slightly in error.)
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6.0 PREDICTOR-CORRECTOR ANALYSIS

This chapter analyzes predictor-corrector procedures in a fashion
dimilar to that of the Runge-Kutta analysis. As in the preceding
chapter, a brief description of predictor-corrector procedures will
help clarify the analysis. For additional details, the reader is
referred to Ralston and Wilf (1960) or Hamming (1962). The latter
reference, in particular, contains an extensive discussion of
predictor-corrector procedures.

Any predictor-corrector procedure is a finite-difference method
that uses previously computed data to assist in obtaining y(xo+ h)
In other words, the calculation of y(xo+ h) generally requires the
use of y(xo), y(Xo- h), y(xO- 2h), ... and of the derivatives
y (xo+ h), y (xo), y'(xo- h)..... The more back data used, the
higher is the order of the procedure. This use of back data repre-

sents the chief difference between a Runge-Kutta procedure, which is
not a finite-difference method, and a predictor-corrector procedure.
Nevertheless, both types of procedure attempt to estimate the solution
of a differential equation by means of a Taylor-series expansion.

A typical corrector (or predictor) formula is given by (see
Hamming (1962))

y(x0+ h) = aoy(xo) + aly(xo- h) + a2 y(xo- 2h)

+ h[b ly'(x0+ h) + boy'(xo) + bly'(x°- h) + b2 y'(x°- 2h)] ,

(45)

where a, and bi are constants. Of the seven constants here, five
are usually chosen such that formula (45) matches the Taylor-series
expansion (30) to fourth-order. The remaining two constants may then
be chosen to improve stability. Corrector formulas require the use of
y'(xo+ h) , i.e., b_1 J 0 , whereas predictor formulas do not, i.e.,
b.1 = 0 . With b.l = 0 , equation (45) is first used to predict a
value for y(xo+ h) . Based on this predicted value, a first estimate
for the derivative y'(xo+ h) is computed by means of the differential
equation. This derivative is next used to calculate a new, more precise
value for y(xo+ h) by means of a corrector formula. A second, and
final, value for y'(Xo+ h) is now computed using this new value for
y(xo+ h) in conjunction with the differential equation. The last values
for y(xo+ h) and y'(xo+ h) are the ones used for the calculation of
the next step.

As already noted in Chapter 5.0, any feasible integration procedure
must be able to vary the integration step size. Therefore, a method
for estimating the local truncation error is necessary. An error estimate
with the above predictor-corrector procedure is possible if the order
of the truncation errors for the predictor and the corrector are equal.
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We shall always assume this to be the case. The truncation error of
the overall procedure is then of the same order as that of the predictor
or corrector. This error is obtained by properly comparing the results
of the predictor and the corrector calculations. One often quoted
advantage of predictor-corrector as compared to Runge-Kutta procedures
is that no additional evaluations of the derivative f(x,y) (see
equation (31)) are necessary to estimate the error.

The analysis contained in this chapter is restricted to the fore-
going predictor-corrector procedure. Unlike Runge-Kutta procedures,
there are many different types of predictor-corrector procedures. An
exhaustive analysis of the numerous types is beyond the scope of this
work. In view of this, the results of this chapter are of a preliminary
nature only.

A further comparison between Runge-Kutta and predictor-corrector
procedures will be useful before discussing truncation error and stability.
First, predictor-corrector procedures are not self-starting. Thus, a
Runge-Kutta procedure, which is self-starting, is generally used to com-
pute the first few steps. As a consequence, predictor-corrector pro-
cedures are more involved than Runge-Kutta procedures to program for a
computer.

Second, varying the integration step size is more troublesome with
predictor-corrector procedures, where the step size is either halved or
doubled, as compared to Runge-Kutta procedures, where the step size can
be changed arbitrarily. According to criterion (44), which is also
applicable here, a predictor-corrector procedure will be stable after
the step size is doubled only if (h/E) < JB , where h is the orig-
inal step size. Thus, the step size must be less than half its permis-
sible size if the procedure is to be stable after the step size is
doubled. The stability parameters that will be derived in Section 6.2
therefore overestimate the average step size that is possible. An
efficient technique for controlling the step size would double it when-
ever (h/-E) < JB . In this circumstance, the step size would on aver-
age be (3/4) that allowed by criterion (44). Consequently, a more
realistic stability criterion for predictor-corrector procedures is
given by

h 3< B (46)

as compared to criterion (44).

Third, the nature of instability is different for the two procedures.
As we have seen, Runge-Kutta instability is due to the numerical solution
diverging from the exact one. Any predictor-corrector procedure, being
a finite-difference method, may converge toward one of perhaps several
spurious solutions instead of toward the exact solution. When this
occurs the procedure is also said to be unstable. Both types of
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instability, however, stem from too large a value for the parameter
h/e . Thus, stability considerations impose a limit on the step size
for both types of integration procedures.

Finally, predictor-corrector procedures require fewer evaluations
of the derivative f(x,y) and, therefore, may require less computation
time than Runge-Kutta procedures. In particular, the foregoing pre-
dictor-corrector procedure requires only two evaluations of the deriv-
ative per integration step. With any Runge-Kutta procedure, the corre-
sponding number of evaluations is 1.5P •

6.1 TRUNCATION ERROR

The truncation error for a predictor-corrector procedure of order
p is given by

Ep = C ( y(P+l) (e) , (47)
~ p (p+l)!

where cp is(a gQnstant that depends on the specific procedure. The
derivative y )(e) is evaluated at a point e in the interval
from xo- rh , the farthest back-data point used in the integration
formula, to x + h .* This derivative is essentially the same as that
in exprestion (36) with the exception that here x = e . Thus, when
equation (28) is integrated, the truncation error is still given by
equation (37), except for the constant cp , which generally is within
an order of magnitude of unity, and the replacement of yo+ xo by
y(e) + e . Consequently, the first two conclusions in the previous
section following equation (37) also apply here. In particular, it is
again possible for h to be greater than e and for the truncation
error nevertheless to be small provided the numerical solution is
sufficiently close to the asymptote.

6.2 STABILITY

At least two different definitions of stability for predictor-
corrector procedures are currently in use. The first of these, referred
to as relative stability, requires that spurious solutions be small
relative to the exact solution. Relative stability is important only
when h/e is negative and therefore is not considered here. This
section deals with the more common form of stability, which is not as
restrictive as relative stability, but is applicable only when h/e

is positive. A finite-difference scheme is considered stable when all
the roots of its characteristic polynomial are interior to the unit
circle. In this circumstance, all spurious solutions of the finite-

* Equation (47) assumes that the influence function is of constant sign

in the interval from x.- rh to x + h . For additional details see
Harning (1962).
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difference scheme decay toward zero. Thus, once the transient region
(see Chapter 4.0) is completed, the numerical solution must converge
to the exact solution when the finite-difference scheme is stable.

There are many stability studies of the type of predictor-corrector
procedure that we are here concerned with. For instance, the reader
is referred to Dahlquist (1956) and (1959), Hamming (1959) and (1962),
Crane and Lambert (1962), Henrici (1962), and Chase (1962). With the
exception of Chase, all of the referenced authors have assumed that
stability of the overall predictor-corrector procedure is determined
primarily by the stability of the corrector alone. Consequently, these
authors derive and examine the characteristic polynomial relevant only
to the corrector. The foregoing assumption, however, is usually correct
only in the limit as h tends to zero. By investigating a few special
predictor-corrector procedures, Chase (1962) has shown that this assump-
tion may not be valid as h/E increases. Therefore, to determine sta-
bility parameters, it is necessary to consider the overall integration
procedure, not just the corrector. This is accomplished by deriving
a characteristic polynomial for the overall procedure.

We now define a generalized predictor-corrector procedure by the
following formulas:

k' k'

z(x 0 + h) - Aiy(xo- ih) + h X B y'(Xo0 ih) , (48)
i=O i=O

k k

y(x 0+h) - a y(xo- ih)÷ hblZI'(xo0 h)+h X b"i•INo- ih) , (49)
i:O i=O

where Ai, Bi, a and bi are constants and k' and k are positive
ii

integers. Equation (48) is the predictor and is used to determine a
first estimate z(Xo+ h) for Y(Xo+ h) . The quantity z'(Xo+ h) in

the corrector formula (49), is given by f(xo+ h, z(xo+ h)) (see
equation (31)1.

As mentioned earlier, we shall require that each of the above
formulas have a truncation error of order (h)P+l . This condition will
then determine some of the constants Ai, Bi, ai , and bi . The formu-
lation of this condition also requires that the estimates z(xo+ h) and
z'(xo+ h) be replaced by y(x + h) and yl(xo+ h) respectively.
When this is done, formulas (49) and (49) are of the same form except
that B.1 a 0 in formula (48). To satisfy the condition that the
corrector be of order p , we require that formula (49) be exact for

29



AEDC-TDR.63.52

the functions y - 1,x,x 2 ,...,xp . In other words, the p + 1 functions

y- ,

Y (50)

x ,

are substituted successively into formula (49), thereby resulting in the
system of equations

k k
(Xo0+ h)m= • ai(xo- ih)m+ mh •.b,(xo- ih)m'l mwO'l, .. ,p

-o i (51)

Since the ai's and bi's ought to be independent of the arbitrary
parameters xo and h , it should be possible to replace equations (51)
by a simpler, alternate system not containing these two parameters.
This system, given without proof by Dahlquist (1956), is derived in the
following paragraph. Equation (51), and hence equation (59), can also
be used to determine the constants in the predictor providing ai, bi ,
and k are replaced by Ai, Bi , and k' respectively and B.1 = 0 .

We proceed as follows: Apply the binoTial theorem successively
to (xo+ h)m , (xo- ih)m , and (xo- ih)m' , thereby resulting in the
following equations:

(xo+h) m = Z m()x-J hj (52)

J-O

where

binomial coefficient m(m-l)... (m-j+l) (53)
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~M"

j-0

- Z (- )3(i)j 3(M)xmh , (54)
J-0

and

M-1

'-O

Replace J' by j-i , and use the identity

1 mm- (56)

\(()M

to transform equation (55) into

m

(x - ih)m - 1 Y (-i)3(i)3la( )x 3h3.1 (5)

J.l

Substitute equations (52), (54) and (57) into equation (51) and then
interchange the j and i summations, thereby resulting in

m m k

Z m) m-JhJ (-l)3( M) xm-h3 (i)3ai
J-o i-0

m k

(-1)1( M) xmJhJ T(i•,• ,,
J=O in-1

m-O,l,... ,p . (58)
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When the coefficients of like powers of h , or xo I are equated, the
desired result is obtained:

kk

Z i " - j ý (i)'- 4 bi - (-i)J , 3. Ol,...,p (59)
i-O jim-i

Equations (59) have the following simple form when explicitly written
out

ao+ al+ a2+...+ ak=

a1+ 2a 2+...+ kak - (bl + b + +b 2 +...+ bk ) -1,

a1+ 4 a2+...+k2ak - 2(-b~l + bl+ 2b +...+ kb ) 1, (60)

1 2" Pak_ 1 2 k)

To further illustrate the importance of Chase's assertion, we shall
analyze the Adams method in detail. This will be accomplished by exam-
ining the stability of the predictor alone, of the corrector alone, and
of the overall procedure. Furthermore, in order to parallel the Runge-
Kutta analysis given in Chapter 5.0, this analysis will also consider
all orders from p - 2 to P a 5

We now give without proof (see Chase (1962)) the characteristic
polynomials needed for the investigation. All of the polynomials are
based directly on formulas (48) and (49). The various constants that
appear in them will then be specialized for the Adams method and for
equations (60). The polynomials are denoted by C(Pr), Ckeo), and
C PC) where the superscripts denote predictor, corrector, and predictor-
corrector respectively. They are as follows:

(pr) = k'+l + •(-A+ B kI-i = 0 (61)

i=O
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k

iO

OW k k'

1 k+l+Z.ai+b h),k-i b hZ(Ai-Bi h),k-i 0

i-o i-0

C(Pc) = 
if k k k' (63)

k k'

k'+l + a h kl-i hZ (A.Bi h, k'-i
P+L (-ai+ui j.) + b C 1 e Ap e 0

i=o ino
"if k S k'. (64)

Following Nordsieck (1962), we shall require any Adams formula to
have a characteristic polynomial of the form

( -ok' .6 a
o(P- 1)pk 0 (65a)

or

(P-l)p - 0 , (65b)

when (h/e) = 0 . The root p = 1 of equations (65) corresponds to
the exact solution, whereas the remaining roots p = 0 are the spurious
solutions. For (h/e) = 0 , the spurious solutions for any Adams formula
do not, in fact, exist. Thus, the Adams formulas are optimum in terms
of damping out the spurious solutions when (h/e) = 0 . Because of this
important property, the Adams method is probably the most widely used
of all predictor-corrector procedures. By comparing equation (61) with
(65a), the following values for the constants Ai are obtained:

A 0 1 , A, - A2 ..... Ak' = O . (66a)

By comparison of equations (62) and (63) with (65b), and equation (64)
with ( 6 5a), the following values for the constants ai are obtained
for all three cases:

ao- 1 a, = a2- ... a ak- 0 . (66b)
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The preceding result means that both of the summations farthest to the
left in formulas (48) and (49) can now be replaced by y(xo) . Since
conditions (66b) also satisfy the first of equations (60), the latter
Is no longer needed.

To determine uniquely the remaining k'+ 1 constants B in
formula (48) by the p linear equations (60), k' must equal p-1i
It is, of course, possible for k' to be greater than p- 1 , thereby
providing k' - p + 1 free parameters, which might then be chosen to
improve stability when (h/i) > 0 . Such an extension is, however,
beyond the scope of this work, and is not given. To determine uniquely
the remaining k + 2 constants bi in formula (49) by the p linear
equations (60), k must equal p- 2 . The same remark as above con-
cerning free-parameters also applies to the corrector (49). The
results of these calculations are sum-arized for p - 2, 3, 4 , and 5
in the following table:

CONSTANTS BI AND bi FOR THE ADAMS METHOD

P Bo B1  B2  B3  B4  b.I bo bI b2 b3

3 1 1 12 -9 - - - 2 -

23 16 5 - L •. 8
U U 12 1212

4 .3 1

•_• .2_ 216 • 251 646 .264 106 .
720 720 720 720 720 720 TO 720 TO 720

Since k' - p - 1 and k a p - 2 , the three relevant character-
istic polynomials (61), (62), and (64) now take the form

C(pr) pp -i + h _i BipPl'i - 0 , (67)
i-o
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c(co) - (l +b. h)p-l _ p-2 + h-1 . 0 , (68)

i-0

0 (pc) . P P+ (-l+b1 h)~p1- b P Pl1i- b (11) 2 jBipPli , 0. (69)
1-0 i=o

where Bi and bi are given by the preceding table. For a given value
of p , each root of each of the characteristic polynomials (67), (68),
and (69) depends on the value of the parameter h/c . For a sufficiently
small positive value of h/e all of the roots are located in the inte-
rior of the unit circle in the complex plane. In this circumstance, as
mentioned earlier, the particular formula is stable. Thus, the predictor
is referred to as stable when all of the roots of equation (67) are in
the interior of the unit circle. The Adams method itself, is stable,
of course, only when the roots of equation (69), the characteristic equa-
tion for the overall procedure, are in the interior of the unit circle.

For some positive value of h/c, equation (67) will have a root
with unit magnitude, i.e., 1Pl = 1 . When this is the smallest positive
value of h/c for which ýhis occurs, then this value is denoted by the
stability parameter B pr)(p) . Hence, the,prqdictor is stable for all

Svalues of h/e that satisfy 9 < (h/c) < B pr) . in a similar fashion,
the stability parameters BkCO)(p) and B(Pc)(p) are defined.

By means of Wilf's (1959) criterion, the stability parameters were
found for various values of p . The following table summarizes the
results of these lengthy calculations:

STABILITY PARAMETERS RELEVANT TO THE ADAMS METHOD

IIIp B (pr) (p) B (co) (p B (PC) (p)

2 1.00 G 2.00

3 .545 6.oo 1.72

S.300 3.00 1.28

5 .163 1.84 .947
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The preceding table shows that all three stability parameters

decrease with increasing p . This result is directly opposite to that

found for the Runge-Kutta procedure. As might be anticipated, f9r

given value of p , th oyerall-pr ce ure stability parameter Bkpc1

has a value between B(Pr6 and B(cO) . Nevertheless, it differs

appreciably from B(e°) . Thus, Chase's assertion is valid here. Since

Bk1Pc does not vary much., there is little reason to prefer the low-

order ( p a 2 or 3 ) Adams procedures to the higher-order ones.

The foregoing analysis indicates that stability is the central

problem when stiff equations are integrated by a predictor-corrector

procedure. For a given value of p , however, the Adams method does

not have an optimum, i.e.,, a maximum, stability parameter. We shall

now consider briefly the question of a procedure with an optimum sta-

bility parameter. The discussion is, however, restricted to p - 4

Set k' a 2 and k - 2 in the generalized predictor-corrector

procedure given by formulas (48) and (49). These formulas then become

z(x 0+ h) = Aoy(xo)+ Aly(xo- h)+ A2 y(x0 - 2h)

+ h[By'(xo)÷ By'(xo- h)+ B2y'(xo- 2h)] , (70)

y(xo+ h) = aoy(xo)+ aly(xO- h)+ a2y(xO- 2h)

+ h[b_ z'(X0 + h)+ boy'(xo)+ bly'(xO- h)+ b2 y'(xO- 2h)] ,(71)

where, as a result of equations (60), the various constants satisfy the

relations

a = -a 1 - a 2  A =- A2

bl= 2(9 - a,) A 1

b = 1(19 +13a + 8a Bo = 1(17+ (72)

ba = ¢- 5 + 1 + 32a 2  B1 B (7 +2A)

b2 -2(1- a,+ 2 ) B2 1, (- A.
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Formulas (70) and (71) involve three free parameters a1, a2 , and A2 P
which will be chosen later. The corrector, formula (71), has been
examined in detail for relative stability by Hamming (1962). Crane and
Lambert (1962) have also examined this corrector for stability. They
find, for example, that formula (71) is stable for 0 < (h/c) < 104
when a1 - - 1. 6  and a2 = .925 •

Stability of the overall procedure is determined by the roots of
the characteristic polynomial

p3 -~~~~~~~[ao- (b0+ bA() (h B (~12_ [al- (b1..b 1 1 () ll~1

[a [- (b + b~l A)(h)+ b _B2( )] 2 0 , (73)

which is readily obtained from equation (64). Each set of values for
al, a2 , and A2 results in a specific polynomial (73) and thus a
specific stability parameter. It has not been possible, however, to
determine analytically the value of al, a2 , and A2 such that the
overall stability parameter is an optimum. Consequently, stability
parameters for a wide choice of values for al, a2 , and A2 were
computed. From among the different values chosen, a = .8, a2 = 0 ,
and A2 = 0 resulted in the largest value of the staiility parameter.
With this choice, the overall procedure is stable for 0 < (h/c) < 1.82
While this choice probably does not correspond to the optimum one, the
author believes that it does not differ from it appreciably. Compared
to the p = 4 Adams method, this choice results in a 40% increase in
the value of the stability parameter. Consequently, this procedure
rather than any of the Adams procedures, will be used in the compara-
tive evaluation given in Chapter 7.0.

6.3 CURTISS.HIRSCHFELDER PROCEDURE

This chapter concludes with an analysis of the Curtiss-Hirschfelder
procedure. Their procedure utilizes the following first-order corrector:

y(xo+ h) - y(xo) + hy'(x 0 + h) .(74)

They avoid the use of a predictor by noting that G and e in equation
(2a) are functions only of x , rather than of x and y . In this
case, after equation (2a) is used to replace the unknown derivative
y'(x + h) , equation (74) can be solved explicitly for y(x + h) .
Whil? this is possible with equation (2a), it is generally not possible
with the chemical or vibrational rate equations.
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Curtiss and Hirschfelder are concerned with both positive and
negative values for h/c in their article, even though the exact
solution diverges from the asymptote (see Sketch 2) when the value is
negative. They assert that the numerical solution of equation (2a)
as obtained by their procedure will always converge toward the asymp-
tote for both positive and negative values of h/e . This assertion
is based on an intuitive, but incorrect, geometric argument. They
then verify this assertion by integrating equation (2a) first with
(h/f) - 5 and then with (h/e) - - 5 • In both cases, the numerical
solution does indeed converge to the asymptote. To further check
their assertion, we now examine the stability of formula (74) by
means of its characteristic polynomial, which is given by

1 1

Equation (75) represents, in a p,(h/e) plane, a hyperbola with one
branch crossing p - 1 and the other crossing p - - 1 . Since
Ijp > 1 for - 2 < h/e < 0 , formula (74) is unstable in this region.
This instability is readily verified by attempting to integrate equa-
tion (2a) with a value of h/e in this range. The numerical solution
is found to oscillate wildly in this case, thereby contradicting the
Curtiss-Hirschfelder assertion. For h/c > 0 , the procedure is always
stable and the numerical solution does converge to the exact solution,
which, after the transient region, is essentially the asymptote. When
h/c < - 2 , the characteristic root is given by the branch of the
hyperbola crossing p = - 1 . In this situation, the numerical solu-
tion converges toward a spurious solution. This spurious solution
happens to be the asymptote; the exact solution actually diverges expo-
nentially fast from the asymptote, as noted in Chapter 4.0. The
reason that the usual stability condition is not applicable here is
that the characteristic polynomial (75) has only one root but two branches.
Of the two branches, only the one crossing p = 1 corresponds to the
exact solution.

7.0 CONCLUDING REMARKS

7.1 COMPARATIVE EVALUATION OF THE DIFFERENT INTEGRATION PROCEDURES

Many numerical procedures are available for the integration of
systems of ordinary differential equations. Basically, three factors
should be considered as criteria for deciding which method is best
suited to a particular problem - namely, truncation error, stability,
and computation time. The last factor is of special importance wlhen
the integration step size is very small in comparison with the total
distance to be covered. With reference to these three factors, two
different integration procedures can be compared as follows: For a
given step size, the higher-order procedure is more precise. When two
different procedures are of the same order their truncation errors are
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here considered to be approximately equal. Stability is compared on
the basis of B , except that (3/4)B is used for a predictor-corrector
procedure (see equation (46)). Computation speed is compared by the
number of derivative evaluations per integration step and the maximum
step size as dictated by stability requirements.

As noted in Chapter 5.0, the fourth-order procedure appears to be
the most suitable of the Runge-Kutta procedures for the solution of the
nonequilibrium equations. This conclusion is based on the observation
that the third-order Runge-Kutta procedure is not as stable or as
accurate as the fourth-order procedure, whereas the fifth-order pro-
cedure requires too much computation time.

All of the predictor-corrector procedures discussed in Chapter 6.0
require the evaluation of two derivatives per integration step. Thus,
these methods differ primarily in the order of their truncation error
and in their stability. When these two factors are considered, the
method given at the conclusion of Section 6.2 appears to be somewhat
superior to the Adams method.

A comparison of the fourth-order Runge-Kutta procedure with the
fourth-order predictor-corrector procedure given at the end of Section
6.2, reveals that the Runge-Kutta procedure is more stable ( B = 2.8
vs. (3/4)B - 1.36 ), but that the predictor-corrector procedure is
slightly faster. The latter requires two evaluations of the deriva-
tives per integration step, whereas the fourth-order Runge-Kutta pro-
cedure requires six. On an overall basis then, the fourth-order pre-
dictor-corrector procedure appears to be slightly superior to the

Runge-Kutta procedure.

Despite the foregoing theoretical advantage, the Runge-Kutta
procedure was chosen for the numerical calculations given in Part II
because its simplicity makes it easy to program for a digital computer.
Had the computation time using the Runge-Kutta procedure proven to be
unreasonably long, then a predictor-corrector procedure would have
been tried. The already programmed Runge-Kutta procedure, however,

would still be needed to start this procedure and to compute inter-
vening points if the step size is halved. Since the computation time,
when the Runge-Kutta procedure was used, turned out to be acceptably
short, no other procedures were attempted.

7.2 CONTROL OF THE INTEGRATION STEP SIZE

It is the purpose of any method that controls the step size h
to maximize this quantity while maintaining stability and keeping the
truncation err)r small. Since an estimate of the truncation error
for a given step is available, the error condition is readily met.
The stability condition requires that h/E be slightly less than the
appropriate stability parameter. The value of the quantity e
although considered a constant in the foregoing analysis, actually
changes continuously; and as demonstrated in Chapter 3.0, it is not
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easily found. It would therefore be desirable to develop a method
for controlling h that does not require the evaluation of h/G

The only readily available quantity for controlling h is the
estimated truncation error per step. For example, Rune-Kutta inte-
gration generally controls the step size by a technique that attempts
to hold constant the estimated error per step. As discussed in Part
II, this method results in an erratic variation of step size when the
rate equations of Part II are integrated. In terms of maximizing the
step size and still maintaining stability, this method is poor.

A method that is based solely on the estimated truncation error
for a single step is not feasible, since there is no direct connection
between the magnitude of this error and the stability of the inte-
gration procedure. It is possible, for example, for a stable procedure
to have a large error in a given step or for an unstable procedure to
have a small one. The stability of the procedure, however, determines
the rate of gowth of the error over successive steps. When a pro-
cedure is unstable, the error will increase with each succeeding step,
whereas the reverse is true when the procedure is stable. The improved
technique, given in detail in Part II for controlling the step size
when the Runge-Kutta procedure is used is based on this concept.

In this method, three constants RI, R2 , and R5 are defined by

R, a lower reference value for the estimated truncation error,

R2 = upper reference value fr the estimated truncation error,

R5 - number of integration steps between possible increases in h

These constants approximately measure the rate of growth of the trun-
cation error. When the estimated truncation error is less than R1
for R5  consecutive steps, the procedure is then considered suffi-
ciently stable to allow for a small increase in step size. On the
other hand, if the estimated truncation error grows with each succeed-
ing step such that it ultimately exceeds R2 , where 0 < R1 S R2 ,
then the procedure is considered unstable and the step size is reduced
by a small amount, The percent increase or decrease in step size is
governed by two constants. To avoid going from a stable to an unstable
integration condition, the percent increase in h should be small,
e.g., 30%. Similarly, to avoid going from a slightly unstable condition
to an overly stable condition that would require excessive computation
time, the percent decrease in h should also be small, e.g., 30%. As
verified by Figure 1 of Part II, the above method approximately maxi-
mizes h while at the same time stability is maintained.
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APPENDIX I

PROOF THAT ALL OF THE EIGENVALUES Kl ARE REAL AND POSITIVE

This appendix proves the following fundamental theorem referred
to in Chapter 3.0:

Theorem: All eigenvalues Kj (i=l,...,N 3 ) , given by the chemical
characteristic equation

1k - K = 0 , (24b)

are real and positive.

A sequence of five lemmas is used to establish this theorem. A
few preliminary remarks concerning the nature of the proof will be
helpful.

Only two physical concepts are required in the proof. First, the
equations that express conservation of components

N3

ni= aio + ajnj, i = N3+, N , (-)
J=l

are necessary. Second, the structure of the chemical rate equations(as
given in Chapter 3.0), when the flow is close to equilibrium, is also
involved. Thus, the proof does not require conservation of momentum
or of energy. The theorem is therefore valid for inviscid or viscous
flows as well as non-radiating or radiating flows. Likewise, the second
law of thermodynamics is not required in the proof. The theorem as
given here, is not applicable when certain physical processes that
alter the form of the chemical rate equations, such as diffusion, are
to be considered.

Two matrices, ((ýkl)) and ((Kki)) , whose elements are Kki

and Kki (see equations (16) and (18)), are used throughout the proof.
The first is an N3 by N, matrix, while the second is an N1 by N1
matrix. Although the theorem is directly concerned only with the N3
eigenvalues of ((Kkf))* as determined by equation (24b), most of the
proof actually deals with ((ýkd)) . The basic reason for this is the
greater simplicity of the elements of ((kd)) as compared with those
of ((Kkk))

We here follow standard matrix theory terminology by referring to the

eigenvalues determined by equation (24b) as belonging to the matrix

((Kki))
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The five lemmas can be briefly sumlmarized as follows: Lemma 1
establishes two useful relations necessary in the subsequent
development. Lemma 2 establishes the connection between eigenvalues
of ((K k)) and those of ((.kl)) . Lemma 3 demonstrates that
((Kki)) has N3  non-zero eigenvalues. Lemmas 4 and 5 are used to

prove that ((ýkl)) is positive semidefinite.* Once these lemmas are
established, the actual proof of the theorem then follows readily.
Following this, the appendix concludes with the demonstration of two
corollaries that help clarify the preceding proof. The first of these
demonstrates that it is immaterial which side of a reaction is taken
to refer to the reactants and which to the products. The second shows
that the eigenvalues of ((Kkf)) do not depend on the specific choice
of the mole-mass ratios ni (i=N 3 +l,...,N 1 ) that are taken to be
given by the conservation-of-components equation (I-1). Both of these
corollaries could have been anticipated from purely physical reasoning.

Lemma 1:

(a) The quantities i are given by

r-iitN2 v

r

(b) The relations

N 3

it = Z aiJKj ' i= N3+ l,...,N 1 , A 1,...,N1  (1-3)
Jul

are a consequence of the equations expressing conservation of components(1-l).

A matrix is referred to as positive semidefinite if all of its eigen-
values are real and non-negative. If all the eigenvalues of a matrix
are real and positive, i.e., none are zero valued, the matrix is
called positive definite.
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Proof: Differentiating equations (6b) gives

br (,,)Or-ar kN] (kVrk V ri

•"•j " ° (T)_n
A cr 

1 V

(Lr- 1) njr - 1 ... ,N2, £ - ,...,N1  , (1-4)

where pT and all nk, except n, , are held fixed in accordance
with equations (11). Since (Lr)* - 0 (see equation (8a)), the refer-
ence value for LLr/ýnj is therefore given by

V

j " n ' r = ,...,N 2  = l,...,N 1  . (1-5)

Substituting equation (1-5) into equations (16) results in equations
(1-2), thereby establishing part (a) of the lemma. It is important to
note that equations (1-5) are valid only if the reference state is given
by the equilibrium-flow solution or the local equilibrium value.

Part (b) is proved by differentiating equation (I-1) and then re-
placing Dnj/Dt by equations (15b) as follows:

I "3
Dti Z Lij Dt

J=1

N3  NI

= Z aij Z KJ£(ne n1) ,
J-1 Awl

Z{Z aix}j (n,,e- nz) i N3 +l,...,N . (1-6)
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The J and J sMiations have been interchanged in the last step.
BY comparing this result vith equations (15b), we obtain equations (1-3).
Thus, the lema is proved.

Lenma 2 will prove that any eigenvalue of ((rkj)) is also an
elgenvalue of .(k t In addition, the lemna will show that any
eigenvalue of k that is not an eigenvalue of ((,w)) is zero.
These two results are established by demonstrating that U cki) ) and

((ikJ)) , except for the factor (K)Nl-N3 , have identical characteristic
equations.

Lemma 2: The relation

Ibk " K kJc " (K) N 1 kN 31 1 kJ (1-7)

is valid.

Proof: The left-hand side of equation (1-7) is a polynomial in K of
degree N1 . This polynomial is denoted by P - P(K) , and when expli-
citly written out is given by

"1 1  -K 12  -K 13  " " N1

P(K) 21 K" 2  - C2 3  - "2NI .(l-a)

K NI1 K KN 2  .. K NIN

First, column N3 +1 of P is multiplied by aN3 ý,1 l and the result

is added to column 1. Commas are now used between certain double sub-
scripts such as N3s+l and 1 , solely for clarity. Next, column
N3 + 2 is multiplied by aN3+2,1 and again the result is added to

column 1. By repeating this process, we finally obtain for the first
column of P
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"- 21

13 1 N1

N3K1 , I' *31+ 3. E a -l aj, N3+1 0
uN 3+1(-)

Nj +K1 2 01  £N+21,1 z il NNi+2

Ni

"N1 1 + l+Nll K - a ,1 l .NJ ,J

3-11+1

where equations (18) are used to obtain the top N3 elements. Column
2 is next altered in a similar manner, i.e., by multiplying column
N3+l10f P by aN3+l,2 and adding the result to column 2 of P etc.

After column 2 the process is repeated for columns 3 through N3  of
P , thereby resulting in
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-I-

N+

+

I . . I Sl .

,-I

++

NN

or

* +

r4r,
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Columns N.3 +1 through N1 of (I-8b), of course, are identical with

the corresponding columns of (I-8a). The top N3 rows of (I-8b) are

now multiplied by - aN3+lk (io-l,...,N3 ) and the result added to

the N1 +1 row of (I-8b). The first element in this row then becomes

N1

a r*
- N3+101  1~-pC 1, N +~1D ' ~N+il "Ul

+ a,3+1,2 "21 + "'" + 'N3+1,N3 "N3,1

N 31S+1,1 - a i,l " N+l, + Z aN3 +l,k .kl (1-10a)

.3N3+1 k-1

When Kkl is replaced by equations (18), and the result is regrouped,
we obtain

N5 Nl N3

-(N3+1 l- 3 +13+,k ki a~l&3l (N 3+l1j xa- 3 +13 ,k k.)k -i j -N3+ I k -i
(I-lOb)

According to equations (1-3), each term enclosed by parentheses in

(I-lob) is zero. Consequently, the first element of row N3 +1 '- .

(I-8b) is zero. In a similar fashion, each element from the first to

the (N3)th of this row of (I-8b) is shown to be zero. The N3 +1

element of this row becomes

N3

"" •.1+,N +3 + x 8* 3+l,k "k,N 3 +l

I49
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which, by virtue of equations (1-3), is equal to K . In a similar
fashion, the remaining elements of the N3 + 1 row of (I-8b) are shown
to be zero. Hence. this row contains only zero elements, except for
the diagonal element, which is K . The argument for the other rows
of (I-8b) from row N3 +2 through row N1  is the same. Thus, deter-
minant (I-8b) can be written as follows:

K K 1 R "12 K " .XlN3 " 0 •N3+1 j N •,1

-K 2 1  it- K2 2

P K- N3,1 K N3,2 ... K K -it, N3,N3+1 . - ,N1

0 0 . . . 0 K 0 . . . 0
• . .0 K

0 0 .. 0 i 0... 0

(I-8c)

This determinant, however, is precisely equal to

N -N
(Kt) 13 IkiKK ' kil

which proves the lemma.

The purpose of the next lemma is to show that ((KkJ)) has N3
non-zero eigenvalues. Since ((Kkg)) is an N by N3 matrix, it
is sufficient to prove that the rank of ((Kkj)) is N3 .* Implicit
in the proof of this lemma is the assumption that N2 4 N3 . As noted
in Part II, an immediate consequence of this assumption is that the
minimum number of chemical rate equations is N3 .

If the rank of ((K ki)) is N3 , then the determinant of ((Kk_))
is not zero and the matrix has no zero eigenvalues. If, however, the
rank of ((Kki)) is less than N3 , then the determinant of ((KkA))
is zero and the matrix has at least one zero eigenvalue.
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Lem= 3: The rank of (("kd)) is N3

Proof: If the rank of (("kg)) vere less than N13 , say N3- 1 , then
there would exist a non-zero constant vector (Cc) (i.1,...•,N) such
that

X 5 c i i , o ,R i,. . • a -01-15

i-i

Equations (17) could thus be transformed as follows:

i- A-I i-i

N3

The terms c i Kit are equal to zero as a result of equations (I-li).

Equation (I-12a) could therefore be integrated to yield

N 3

Z cini u constant. (I-12b)

This result is not possible, however, since equations (17) represent
the minimum possible number of rate equations. Consequently, the rankof ((K k)) must be N3 and the lemma is established.

The remaining two lemmas are used to show that ((KkA)) is positive
semidefinite. A sequence of determinants, given by

"11 1 2 ,m

-(0) M 21 . m- 1 ,. , (I-13)

51



AEDC.TDR63.2-2

forms the starting point for the proof. Basic to the proof is the
following theorem from matix theory: An N1 by N1 matrix ((;ki))
is positive semidefinite if, and only if,

R(O)m a 0 M m- I,...,N1 (1-14)

m

The above theorem is usually proved for positive definite matrices. In
this case, the symbol ( A ) in conditions (1-14) should be changed to
the symbol ( > ). A proof of this theorem can be found in Frazer, Duncan,
and Collar (1947).

Our ultimate purpose is to show that ((Kki)) is positive definite.
This goal will be achieved, in part, by proving ((KkA)) positive semi-
definite. This round-about approach is undertaken because a direct
proof that ((KkJ)) is positive definite would be considerably more
difficult owing to the complicated structure of the elements of ((Kkg))"

The actual structure of the chemical rate equations, when the flow
is close to equilibrium, is embodied in the quantities , as given
by equations (1-2). This structure enters in an essential way into the
next two lemmas. To put it differently, ((ýkl)) is positive semi-
definite because of this structure.

Before starting the next lemma, we will define certain quantities
that are necessary for its formulation. When the Kki , given by
equation (1-2), are substituted into equation (1-13), the elements of
each column are seen to contain the factor l/ne • Consequently, a new
sequence of determinants is defined as follows:

-MI m• -(o) (I-15a)

N 2 Vrlvl 2V rlVrm

rZ r rri r

rml r rl r
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When the various elements of determinant (I-15b) are multiplied against
each other, in accord with the usual rules for computing the value of
a determinant, certain quantities, such as (in this illustration m .2 )

1 1 1 1
1) W *)Ie We

will regularly appear. ,T1ese quantities are here considered to be the
variables upon which RM1l depends. The coefficients of these variables
are readily seen to be functions only of the constants Vri . In order
to introduce a notation for these variables, a subscripted r, rs , is
now used to denote any value of r from 1 to N2 . For a fixed m
the above variables are defined by

21 (1-16)

where the dependence of H on the parameters m and rl,...,rm is
explicitly indicated. For example, with m = 2, rI = 5 , and r 2 = 1 ,

H is given by

H(2;5,1) - H(2;1,5) = . (1-17)

For reasons that will become apparent in the proof of Lemma 4, the defi-
nition of H given above is restricted to prevent any 8* from appear-
ing more than once. Thus, in addition to definition (1-19), we also
require that if s ý t then

r rt

Differnt. H's will be distinguished by subscripts. Therefore,

Hl(m;rl ,...,rm•) must have at least oe rl) value that is differ-
ent from all the r(2) values in H(m;r 2 ),...,r(2))

Lemma 4: Each m by m determinant KM can be written as
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Km - A AH(mr ,.rm ,Mm lj,...PN 1  (1-18)
i-l

where

N N (1-19)

and the constants Ai = Ai(m;ri) ,...,ri ) depend only on the para-
meters Vrj *

A simple illustration of Lemma 4 is provided when m = 1 . In
this case, we have

N2  V2
•il) = n,(o) = yr1

1 1 1 L * (1-20)
r=l r

(2)= N2,HI(l;r(i)) =(e•)- and A, i2

i = il*

-WiProof: Each element of Km contains N2  terms, according to deter-
minant (1-15b). Therefore, using the determinant rule

a1 + a2  b a1 b a2 b

+
cI + c 2  d Ce d c2  d ,

we can write ; as the sum of (N )m determinants. Each of these
is an m by m determinant, whose elements have the form

Vri Vrj 
(1-21)

e*
r

Since every element in a particular column contains vrj/e*• , this
factor may be taken outside of the determinant. Thus, each of the
(N2 )m determinants is of the form
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Vr1 l 1  V r2,1 " VrM,1

r . . . (1-22)

Vr1,3  VF2,5  ". • r3 m

Note that if rs = rt, s j t , the determinant in expression (1-22) is
zero since two columns are equal. Hence, only those determinants for
which rS n rt when s j t need be considered. In addition, if
m > N2  then at least two columns must be identical in each of the
(N2 )m determinants. Consequently, we have

R(i) . , (1-23)
m

for all m> N2

According to the foregoing, 1) is a linear function of the
variables

(11-24)

where r. 4 r when s j t . Each of the products in expression (I-24)
therefore contains m distinct or* selected from the N distinct
Or* . Thus the number of distinct variables of the form (1-24) is given

by the binomial coefficient (:2) . Each of these was defined earlier

asa imri hrfrR can be written asequation (1-18), thereby proving the lemma.

I
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Lena 5: The constants A1  are given by

0.(V)i, Mw -12

.(i) ()

A.( ,r 1  ..

1 (e

Proof: The number of permutations of the m distinct numbers

r i,. .. ,ri) is m!.. Consequently, the variable Hi will occur m!

times in the original expansion of _l) into (N2 )m determinants.

For example, with N2 = 3 and m = 2 , each of the (N2)m = (3)2= 9

determinants in the expansion is multiplied by one of the follow-
ing variables:

1 1 1 1 i1 1 1 1 1

• ' (G ' (T8)7 1 21 1 31 2 33 32

As we have already seen, the coefficients of the (ei)2 variables are
zero. There are then mi. = 2. = 2 variables, such as (Wi6) and
( '•e1)-l , each of which is designated by the same Hi

According to expression (1-22), each of the m! terms in the coef-
ficient of a particular Hi is of the general form

r1 %

(V) 1)(1-26)

(V)() " (V)()

56



AE DC*TDR-6342

With Hi fixed, we now examine the m! determinants appearing in the
coefficient of this Hi . Each of these determinants contains the same
columns but in a different sequence. In fact, no two of the m!
determinants have their columns in precisely the sam sequence. Since
Interchanging columns in a determinant simply changes its sign, all m!
determinants are equal to

1( i), ri ,

(sp a) . . (1-27)

(v)( ). *""" (v)(i)

where sgn a is 1 or - 1 depending on whether the permutation a
is even or odd. One column interchange represents an odd permutation,
two an even permutation, etc.

The constant A4  is then obtained by suming the m'. terms-in
the coefficient of as follows:

(v)(i) . . . ())(•)

Av I (V)(()) rC

,V(ip (v) (i

where the sumation is over all m. permutations of r 1  ,... rm
After the determinant, which is a common factor, is taken outside the
summation, A, becomes
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Ai- (SP 0) aT(V)(i

(v)(l) . . "(i)

- P. 0 , (1-28b)

According to the usual definition of a determinant (see Marcus (1960)),
the summation is given by

(v±) ...

S1,m r~i,
(V(i, 00 (V)

Consequently, Ai is given by equation (1-25), thus proving the lemma.

A simple illustration of Lemma 5 is provided by the earlier example
when N2 - 3 arid m = 2 . The six non-vanishing determinants in the
expansion of kl) are then treated as follows:

58



AEOC-TDR-63.82

11 22 21 11ý12 11 31V32
W,- W2 W2 F-1 WP

112 22 232 12 132 32

42. ++

1 W2 -W2 W1 1 73

V V21  V1  V V 21 Vi i 31

(1) V1 v11 1 21 2V 21 11 1132+

12 F1 TV~ 12 21 22V2 V 12  13 2 32

(V12-Vi2 2 + (Vl 1V3 2 - V12V 312  + (V2332 W 1 2
K2  O*9* _F2 W

(1-30)

A second illustration of the lemma is provided by KI , given by
equation (1-20).

As a result of Lemma 4 and 5, the proof that ((,kl)) is positive
semidefinite is simple. Since all Hi and Ai are non-negative, I1
4 ) are non-negative. Equations (I-15a) then imply that all Y4o) are
non-negative. Conditions (1-14) then state that ((;kl)) is positive
semidefinite, i.e., all its eigenvalues are real and non-negative.

The proof of the theorem stated at the outset of this Appendix is
now also simple. The preceding paragraph demonstrated that all eigen-
values of ((iki)) are real and non-negative. According to Lem= 2,
however, all eigenvalues of ((Ky)) are eigenvalues of ((ikj)) .
Thus, all eigenvalues of ((Kki) are real and non-negative. Lemma 3,
however, proved that all N3  eigenvalues of ((Kkj)) are non-zero.
Consequently, all eigenvalues of ((Kkl)) are real and positive, thereby
proving the theorem.

Two corollaries of the theorem are now given. Corollary 1 is
primarily a consequence of Lemma 1.
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Corollary .: The specific values for the N3  eigenvalues Ki are
unchanged when the forward and backward directions of any reaction are
interchanged.

Proof: All that is necessary is to show that the K H are unaffected
when the two sides of a reaction are interchanged. oor convenience,
assume that reaction 1 is so altered, while the remaining reactions are
left unchanged. All vli must then be replJ.cced by - Vli . Also,
according to equations (6c),

a%-i N4
( "1= (-*) N( ( k •(-31)

(kU) (qi)

Noting that Kc (T*) = (kfl(T*)/kbl(T*)) and L (p*, T*, n =) 0

(see equations e8a)), we can write equations (6bj for r = 1 as follows:

1 (P*) P1"l 1 (nj)Vlk (I-32a)K cI(T*) k~l

Multiply both sides of equation (I-32a) by

N4  Vl

fH (n) = 1 , (1-33)
k-N1+1

since Vlk = 0 for k = N1 +I,...,N 4 , and then rearrange the results
to obtain

al-i N4  N4

(P*) kfl(T*) U(nq)ik (.*)l1 kbl(T)l(n) . (I-32b)

By comparing equations (I-31)'and (I-32b), we observe that (e9)"I is
unaltered when the two sides of reaction 1 are interchanged. When these
changes are introduced into the r = 1 term of KkJ , as given by
equations (1-2), we see that ýki remains unchanged.

Corollary 2: The specific values for the N3 eigenvalues Ki do not
depend on the particular choice of mole-mass ratios ni (i=N.+l,...,Nl)
taken to be given by the conservation-of-component equations N1-1).
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As an illustration of Corollary 2, consider the model for air given
in Part II, where the mole-mass ratios ni represent 0, N, NO, N2 ,
and 02 , respectively. From the two equations,

nI1 + n 3 + 2n 5 w constant ,(1-34)

S+ n3 + 2n 4 = constant

that express conservation of atomic oxygen and atomic nitrogen, respec-
tively, eight different sets of equations, each set containing two
equations of the form (I-1), are equally possible. The corollary then
asserts that the eigenvalues are the same no matter which of the eight
sets of equations (I-1) is chosen. While the eigenvalues are invariant
with respect to this choice, the coefficients Bik in the linear trans-
formation (19a) do depend on the choice.

Proof: Corollary 2 is established by noting that all eigenvalues of
(TKkA)) are also eigenvalues of ((Rki)) , as proven by Leung 2. The
eigenvalues of ((Rk )) , however, do not depend on the conservation of
component equations (I-1). Consequently, the corollary is proven.

The eigenvalues can be computed either by solving the N3 by N3
determinant equation (24b), or by solving the N1 by N1 determinant
equation

J1k5 -Kk•I = 0 • (1-35)

This latter equation yields the correct N3  non-zero eigenvalues plus
N1 -N3  zero eigenvalues. While the elements of equation (1-35) are
considerably simpler than those of equation (24b), the higher order of
equation (1-35) more than offsets this advantage. Thus, for computa-
tional purposes equation (24b) is superior. This is especially true
when the eigenvalues are to be computed with a digital computer using
a standard eigenvalue routine. These routines sometimes have conver-
gence difficulties when there are multiple zero eigenvalues.
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APPENDIX II

EXAMPLE ILLUSTRATING THE TRANSFORMATION TO CANONICAL FORM
OF THE CHEMICAL RATE EQUATIONS

By means of a simple example, this appendix illustrates the theory
given in Chapter 3.0. The gas model, including the reactions, is not
presumed to be physically realistic; it was chosen purely on the basis
of its simplicity. In addition to the foregoing, the appendix also
demonstrates the behavior of the transformation given in Chapter 3.0 in the
frozen and equilibrium limits. This is accomplished by applying the
limit processes to the illustrative example.

We assume a gas composed of the three reacting species X, X2  and
X3 . Their mole-mass ratios are designated by nl, n2 , and n3 ,
respectively. Three reactions are assumed to govern the chemical kine-
tics as follows:

r = 1 :X3 G&BX + X2 ,

r = 2: X -2X2

r = 3: X+ iX3 2X2

The gas model thus contains 3 species, 1 component, 3 reactions, and
no inert or catalytic bodies. Hence, the parameters Ni are given by

N, = N2 = N4 = 3 N = 2
|3

Conservation of component X is given by

n + 2n 2 + 3n = 3a0 constant (II-2a)

By solving for n3 , we obtain the following equation for conservation
of components :

n 3 a 30o+ a 31nl1 + a 32 n 2'(l-)

i 2
n 3 = a0o- "1nl - n2•
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The quantities Lr and Or' defined by equations (6b) and (6c)
are then

L1 -P-nln 2
Lc 15 9 .1 kfln3

2

L2n2  ' 2 K - kf 2 n2 ,

2
1 n 2 -13 KC n1n 3 83 Pkf 3nln53

and the rate equations (5) are given by

Dn1 L1 L2 3L

Dn2 L1 L2 L3

No rate equation for n3  is necessary since this quantity is determined
by equation (II-2b).

The coefficients Wi, in the linearized form (15b) of the chemical
rate equations are as follows:
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-1 4 1

4 + 1

1 F2 F3

- 1 1 4

i i*1 F2 V3

1 +1
K3 1 13

("-5)
1 2 2

n*2 n - 1- 1 2 F

3 13 1 31= "Fi + *3
1 2

n• --n• =- 2-•
3i*23 2K32 0*1 -

The coefficients K that account for conservation of components in
the linearized form (17) of the chemical rate equations are as follows:

1 11 4 1
K K ++n a.+•5n11 = 11+ a3113 = nw -n nnl--'

1 1+2 i 1 4 1+ 1n1
K 2 2  K2 +  a53 2 2 3  =+ + ME T ++ W+

- 11-6)

1 2  12 3213 + n 2 n 2  1 1n1

The transformation equations (19a) and (26) are given by:
12 12 +B1  n2 ,

-2 B2 1n1 + n2  (1I-7)

n2= n3  J
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where Bii = 1 is arbitrarily assumed. Before the constants B1 2  and
B21 can be found, the characteristic equation (24b) must be solved.
This equation is:

K K 1 1  K 12
=.0 , (Il-Sa)

K2 1  "21

or

K2 - (K 1 1 + K2 2 ) K + (K 1 1 K2 2 - K2 1 K 1 2 ) = 0 . (II-8b)

The solution for the two eigenvalues is then given by

K 1  K + K (K 1 - K 2  + 4K K1i 2 1i + 22 i" 11 -2 21 12 '

"2 2 22Kfll + K + (KI" K 2 2 )2 + 4K 2 lKl}

1I where Ki is arbitrarily chosen to go with the solution containing
the minus sign.

The constants B and B21 are determined by equations (23)
For example, B , i2wh =1 and = 1 is given by

"1B i (II-lOa)1I2 K 2

or, with i= 1 and 1 2 ,by

B K 1 2  (Il-10b)
12 K K" K22

These two values for B1 2 , by virtue of equation (II-8b), are equal.
With i = 2 and I = 2 , we obtain B2 1 as

K2 - K2 2  (II-ll)

21 K 1 2  "
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Thus, the transformation (II-7) is uniquely determined.

The two transformed rate equations that replace equations (11-4)

are given by equations (20). They need not be repeated here.

Although the theory of Chapter 3.0 is valid only for a near-
equilibrium flow, the frozen limit nevertheless makes physical sense.
For simplicity, we shall apply this limiting process to one reaction;
the other reactions will, of course, behave in a similar fashion in this
limit. Thus, we imagine a situation where one reaction rapidly changes
from a near-equilibrium value to a frozen value. To be more precise,
we let reaction 1 freeze while reactions 2 and 3 are unaltered. In
mathematical terms, we require that

kfl - and kbl 0 , (11-12)

which implies that (see equations (11-3))

61 -. and fl 0. (11-13)

J Thus, the 61-term vanishes from all Kii and reaction 1 no longer
affects thf eigenvalues or the coefficients Bil . Freezing reaction 1
is therefore tantamount to eliminating it from the original set of

reactions.

We next investigate the equilibrium limit, in a similar fashion, by
requiring reaction 1, for example, to tend toward equilibrium while
reactions 2 and 3 are unaltered. In other words, we require that

t
kf1  and kbl , (11-14)

which implies that

I

Substituting equations (11-6) into (11-9) and then simplifying, we obtain
fn*+ 4n*+ gn*n 1

K n11n3 i.) b + F + 2(t.1) (II-16a)
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= + + + O(l) . (II-16b)

In the limit as el tends to zero, Kl tends toward a finite positive
value while K2 tends toward + m . Equation (II-16b) in conjunction
with the rate equation (20) for q 2 , then implies that q2 -q 2 ,e tend
to zero, or

q2 " q2,e = B21(nl- nl,e) + (n 2 - n2,e) ' 0 (11-17)

To better understand the above expression, we first compute B2 1
and B1 2  via equations (II-lOa) and (II-11). When this is done, the
following result is obtained:

Bl2 -1 
a ~

/fl* ( n* +3n 1

B1 (7 2n*2+ 3n3)

Next, substitute equations (1-5) into eqLation (13b) thereby resulting
in

4~N1

m er a (nns- n1,e r = ,...,Nl2. (II-19a)

With r = I , with (n 3 -n e) eliminated via equation (II-2b), and by
means of expressions (I I-lg• we finally obtain

L 2 n Bz (nB n +(nI- n2,) (II-19b)
L1T) 21 .- . nl,e 2 ( 2- ,e

in the limit as e6 tends to zero. Equation (II-19b) is the linearized
form of L1  (see equations (11-3)) with conservation of components
accounted for. By comparing expressions (11-17) with equation (II-19b),
we observe that the requirement that 0* tend to zero is equivalent
to the requirement that the linearized form of L1  tend to zero. The
equilibrium limit for reaction 1 thus reduces the system of two rate
equations to a system consisting of one rate equation for q, , discussed
below, and one algebraic equation that represents the linearized form
of the law of mass action for reaction 1.
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When B12 , given by (11-18), is substituted into the transfor-
mation (11-7, we obtain the equation

q - n, n 2 (11-20)

To better understand this equation, note that L /6 , which is inde-
terminant in the equilibrium limit for reaction i, disappears when the
difference of the two rate equations (11-4) is taken as follows:

S1 2 = (L2 L3-21a)

After the right-hand side of equation (II-21a) is linearized, this
equation can be shown to reduce to

Dq1

I 1- e)

where K, is given by equation (ii-16a) with 61 = 0 , and equation
j (11-20) is used to obtain ql and ql e . Thus, the one applicable

rate equation (II-21b), in the equilibium limit for reaction 1, is
formed by eliminating the indeterminant form LI/e 1  from the original
rate equations (TI-4).

The foregoing illustrates that the theory of Chapter 3.0 has the
correct behavior in the frozen and equilibrium limits.
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